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of polytypism appears to be the Jagodzinski’s disorder
theory.
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The Geometry of Lattice Planes

By J.F.NicHOLAS*

School of Physics, University of Warwick, Coventry, England

(Received 14 August 1969)

The advantages are discussed of using a ball model to determine the arrangement of lattice points in a
given lattice plane and for determining the stacking properties of such planes. It is shown that the ball
model can be considered as a simple analogue computer for solving the Diophantine equations involved.
To date, such ball models have been used only for cubic and hexagonal crystals, but they can be con-

structed for many other structures.

In papers with the above title, Jaswon & Dove (1955)
and Bevis (1969) have presented systematic methods
for mapping the projection of a lattice on to a plane
of given Miller indices (hk/). The aim of this paper is
to draw attention to another method, that of construct-
ing a ball model of a crystal divided parallel to (hkl),
and to note an error in the earlier papers.

The essential problem is that of finding lattice vec-
tors u,v,w such that u,v define a primitive mesh in an
(hkl) plane and w,v,w define a primitive unit cell in
the lattice. It is usually advantageous if the vectors are
as small as possible, ie. if the angles between them
approach 90°.

Jaswon & Dove (1955) solve the problem by using

a'=.0h
b'=0,/k Y

* Permanent address: Division of Tribophysics, C.S.I.R.O.,
University of Melbourne, Australia.

to define a unit mesh in (4k/) and then searching out
all extra lattice points within this mesh in order to
determine a primitive mesh. They then look for a suit-
able w=wy, n,, w; by solving

hwy+kw,+Iwy=1. )
On the other hand, Bevis (1969) chooses
k h
u= 'd' ) d ) 0 B (3)

where d is the highest common factor of # and &, looks
for an integral solution my,m, of

m,k—mzh=d s (4)
and can then write down
v=k(l +m3)—Imy, —h(1+m3)+Im, —d, (5

where m; (or, more simply, 1+ m;) is an arbitrary in-
teger. Equation (2) is then solved to give w.



J. F. NICHOLAS

Both methods calculate the shift vector t, which is
the projection of w onto (hk/), as

t=w—d, ©6)

where d is a vector perpendicular to (kk/) and of mag-
nitude equal to the spacing between (hk/) planes. The
projections of successive planes are then plotted by
calculating the magnitudes of and angles between u,v
and t. Since w is not uniquely defined by equation (2),
there are many possibilities for t and Jaswon & Dove
specify that t shall be as short as possible; even this
restriction often leaves t ambiguous (see, for example,
Fig. 2). It may be noted that Bevis uses h to denote
the vector d in his equations (4) and (14) although in
his Introduction and in the preamble to equation (14)
he has used h in the more usual sense as the vector with
components (hkl) relative to the reciprocal axes, i.e. as
the vector parallel to d but of length equal to the
reciprocal of the interplanar spacing.

Equations (2) and (4) can normally be solved very
quickly by a trial-and-error process but, since the ne-
cessary algorithms exist, it is of course possible to carry
out the whole process on a computer (e.g. Bacigalupi,
1964). This only gives immediate and complete results
for those fortunate enough to have direct access to a
terminal with plotting facilities.

A completely different approach is to construct a
ball model of a half-crystal which terminates on an
(hkl) surface. Methods of doing this for a variety of
cubic and hexagonal structures are given in Moore &
Nicholas (1961) and Nicholas (1961, 1962), while a
selection of results appears in Nicholas (1965). From
such a model, a plot of the unit mesh and of the stack-
ing of planes can be produced photographically or, if
greater accuracy is required, suitable vectors u,v,w can
easily be selected and indexed on the model and the
plot carried out as in the other methods. Thus, the
ball model can be considered as a simple and econom-
ical analogue computer for solving Diophantine equa-
tions such as (2) and (4) and for producing a plot. As
an example, Fig. 1 shows a model of a (5, 8, 11) sur-
face in a body-centred cubic crystal (the example chosen
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by Bevis), together with a plot showing the unit mesh
in the surface and the stacking vector w as derived
from the photograph.

The advantages of modelling are that a visual im-
pression of the stacking over several layers is available,
a variety of planes can be considered in quick succes-
sion, the simplest unit mesh (e.g. the rectangular mesh
in Fig. 1, which is not described by Bevis) is obvious,
and any gross errors in calculating a plot of mesh shape
can be eliminated by comparison with the model. The
indexing of the vectors depends on prior indexing of a
basis such as OA4BC in Fig. 1(a), but this is necessarily
done when the model is being set up. It is worth noting
that the identification of equivalent vectors is always
simpler on the model itself than on a photograph.

Although surface models have only been built for
cubic and hexagonal structures, the theory in Nicholas
(1961) describes a method for their construction in any
structure for which a ‘ball’ model of the bulk crystal
can be made. No general rules can be laid down for
the construction of such bulk models but a large range
of structures can be modelled by using base plates to
force the first layer of balls into a predetermined pat-
tern and/or by using balls having a degree of asym-
metry.

The error referred to in the opening paragraph arises
when the analysis is applied to lattices indexed relative
to a centred unit cell and (hk/) is such that

hW1+kW2+1W3=% (7)

has solutions for wj;,w,,w; equal to a lattice vector
(with at least two of the w; non-integral). This implies
that there are other lattice planes between those whose
maps are separated by t. Bevis (1969) tabulates the con-
ditions when this occurs for various centrings of the
cell and then asserts that the extra planes are to be
plotted at 4t from the original ones. Jaswon & Dove
(1955) and Jaswon (1965) make equivalent assertions.
In fact, as can be seen from Fig. 2, which shows a
plot of (111) planes in a body-centred cubic lattice, the
displacement need not be 4t. However, it must be one
of 1t,3(u+1t),1(v+t),L(u+v+t), the selection depend-
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Fig.1 (cont.). (c) Two lattice planes as traced from the photograph of the model (see Plate 42).
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(&)

Fig. 1. Model of (5,8,11) surface in a body-centred cubic lattice viewed (@) normal to the surface and (b) obliquely. The dark balls
represent lattice points in the outermost plane, the white ones those in lower planes. The vectors OA = 1,1,0; 0B=0,1,T;
0C=4,4,1 shown in (a) define a primitive unit cell in the lattice. By tracing ball-to-ball displacements, the rectangular unit
mesh can be shown to have edges of u=0A4+ BO=1,32,1 (horizontal) and v=0A4 +30C= 3,43 (vertical), while the shortest
w is clearly OC. The plot in (c) (p. 471) shows two lattice planes as traced from the photograph.

[To face p. 471
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ing on the original choice of w, with or without Jas-
won’s restriction on the size of t. The simplest way of
plotting centred lattices is temporarily to ignore the
centring, choose u,v,w as lattice vectors, with integral
components, which define a unit cell of volume equal
to that of the centred unit cell, and plot the lattice
planes so described. Then, centre each of the seven
vectors w,v,w, u+v, v+w, w+u, u+v+w that satisfies
the conditions in Table 1. Finally, plot extra nets of
points based on each of the centring points.

Table 1. Conditions under which a lattice vector with
integral components S, 5,,5; will be centred

Number of
tested vec-
tors that
will be
Lattice Condition centred
Body-centred 51,52,53 of same parity 1
Face-centred s1+s2+53 even 3
Base (C)-centred s1+s2 and s3, both even 1

I am indebted to the Association of Commonwealth
Universities for the award of a Visiting Professorship,
to CSIRO for a grant of leave, and to the University
of Warwick for hospitality while this note was pre-
pared.

References

BacicaLurl, R. J. (1964). NASA Technical Note, NASA
TN D-2275.

Acta Cryst. (1970). A26, 472

THE GEOMETRY OF

LATTICE PLANES

Fig.2. Plot of (111) planes in a body-centred cubic lattice; the
numbers show lattice points in successive planes with ones
representing body-centre sites. Three possible shift vectors
[as defined by equations (2) and (6)] t;,t2,t3 are shown, all
being of equal length. The lattice vector joining successive
layers is clearly not 4:: but could be 4(t; +V) or 3(t2+u+v)
or 3(t; +u).

Bevis, M. (1969). Acta Cryst. A25, 370.

Jaswon, M. A. (1965). Mathematical Crystallography.
p. 116. London: Longmans.

JaswonN, M. A. & Dove, D. B. (1955). Acta Cryst. 8,
88.

MOORE, A. J. W. & NicHoLAs, J. F. (1961). J. Phys. Chem.
Solids, 20, 222.

NicHoLas, J. F. (1961). J. Phys. Chem. Solids, 20, 230.

NicHoLAS, J. F. (1962). J. Phys. Chem. Solids, 23, 1007.

NicHOLAS, J. F. (1965). An Atlas of Models of Crystal Sur-
faces. New York: Gordon & Breach.

One-Dimensional Models for Small-Angle X-ray Diffraction from Crystalline Polymers.
1. General Model
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The relationship between a one-dimensional model for predicting small-angle X-ray scattering from
crystalline polymers and a three-dimensional structure containing a one-dimensional periodicity is
discussed. The basic features of previous models are reviewed. Based on the approach of Hosemann for
a simple two-phase system, a model is formulated in which the density variation within the crystalline

regions is described by an arbitrary function &(y).

Introduction

This article is concerned with the formulation of a gen-
eral one-dimensional model suitable for describing dis-
crete small-angle X-ray scattering from crystalline poly-
mers. The diffraction occurs at angles around one
degree and is generally attributed to a regular alterna-
tion in texture every 100-300 A between crystalline and
amorphous-like intercrystalline regions. In most types

of sample, the periodicity within each local scattering
sequence is essentially one-dimensional. This is well
illustrated by the case of samples made by sedimenting
a suspension of solution grown polymer crystals. In
their simplest form, the crystals are about 100 A thick,
bordered on their planar surface by thin layers of amor-
phous-like material (Keller, 1968). Thus on sediment-
ing, the crystals stack on top of one another to form a
periodic crystalline-amorphous structure perpendicular



