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of polytypism appears to be the Jagodzinski's disorder 
theory. 
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The advantages are discussed of using a ball model to determine the arrangement of lattice points in a 
given lattice plane and for determining the stacking properties of such planes. It is shown that the ball 
model can be considered as a simple analogue computer for solving the Diophantine equations involved. 
To date, such ball models have been used only for cubic and hexagonal crystals, but they can be con- 
structed for many other structures. 

In papers with the above title, Jaswon & Dove (1955) 
and Bevis (1969) have presented systematic methods 
for mapping the projection of a lattice on to a plane 
of given Miller indices (hkl). The aim of th.is paper is 
to draw attention to another method, that of construct- 
ing a ball model of a crystal divided parallel to (hkl), 
and to note an error in the earlier papers. 

The essential problem is that of finding lattice vec- 
tors u,v,w such that u,v define a primitive mesh. in an 
(hkl) plane and u,v,w define a primitive unit cell in 
the lattice. It is usually advantageous if the vectors are 
as small as possible, i.e. if the angles between them 
approach 90 ° . 

Jaswon & Dove (1955) solve the problem by using 

a' =l,O,h 
b'=0,I,~ (1) 
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to define a unit mesh in (hkl) and then searching out 
all extra lattice points within this mesh in order to 
determine a primitive mesh. They then look for a suit- 
able w = wl, w2, u'3 by solving 

hwl + kw2 + lw3 = 1 . (2) 

On the other hand, Bevis (1969) chooses 

k h 
u :  -d' d ' 0 '  (3) 

where d is the highest common factor of h and k, looks 
for an integral solution ml,m2 of 

m l k -  mzh = d ,  (4) 

and can then write down 

v=k(1  nt-m3)-hn2, -h (1  +m3)+hrl l ,  - d ,  (5) 

where m3 (or, more simply, l + m 3 )  is an arbitrary in- 
teger. Equation (2) is then solved to give w. 
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Both methods calculate the shift vector t, which is 
the projection of w onto (hkl), as 

t = w - d ,  (6) 

where d is a vector perpendicular to (hkl) and of mag- 
nitude equal to the spacing between (hkl) planes. The 
projections of successive planes are then plotted by 
calculating the magnitudes of and angles between u,v 
and t. Since w is not uniquely defined by equation (2), 
there are many possibilities for t and Jaswon & Dove 
specify that t shall be as short as possible; even this 
restriction often leaves t ambiguous (see, for example, 
Fig. 2). It may be noted that Bevis uses h to denote 
the vector d in his equations (4) and (14) although in 
his Introduction and in the preamble to equation (14) 
he has used h in the more usual sense as the vector with 
components (hkl) relative to the reciprocal axes, i.e. as 
the vector parallel to d but of length equal to the 
reciprocal of the interplanar spacing. 

Equations (2) and (4) can normally be solved very 
quickly by a trial-and-error process but, since the ne- 
cessary algorithms exist, it is of course possible to carry 
out the whole process on a computer (e.g. Bacigalupi, 
1964). This only gives immediate and complete results 
for those fortunate enough to have direct access to a 
terminal with plotting facilities. 

A completely different approach is to construct a 
ball model of a half-crystal which terminates on an 
(hkl) surface. Methods of doing this for a variety of 
cubic and hexagonal structures are given in Moore & 
Nicholas (1961) and Nicholas (1961, 1962), while a 
selection of results appears in Nicholas (1965). From 
such a model, a plot of the unit mesh and of the stack- 
ing of planes can be produced photographically or, if 
greater accuracy is required, suitable vectors u, v, w can 
easily be selected and indexed on the model and the 
plot carried out as in the other methods. Thus, the 
ball model can be considered as a simple and econom- 
ical analogue computer for solving Diophantine equa- 
tions such as (2) and (4) and for producing a plot. As 
an example, Fig. 1 shows a model of a (5, 8, 11) sur- 
face in a body-centred cubic crystal (the example chosen 

by Bevis), together with_ a plot showing the unit mesh 
in the surface and the stacking vector w as derived 
from the photograph. 

The advantages of modelling are that a visual im- 
pression of the stacking over several layers is available, 
a variety of planes can be considered in quick succes- 
sion, the simplest unit mesh (e.g. the rectangular mesh 
in Fig. 1, which is not described by Bevis) is obvious, 
and any gross errors in calculating a plot of mesh shape 
can be eliminated by comparison with the model. The 
indexing of the vectors depends on prior indexing of a 
basis such as OABC in Fig. l(a), but this is necessarily 
done when the model is being set up. It is worth noting 
that the identification of equivalent vectors is always 
simpler on the model itself than on a photograph. 

Although surface models have only been built for 
cubic and hexagonal structures, the theory in Nicholas 
(1961) describes a method for their construction in any 
structure for which a 'ball' model of the bulk crystal 
can be made. No general rules can be laid down for 
the construction of such bulk models but a large range 
of structures can be modelled by using base plates to 
force the first layer of balls into a predetermined pat- 
tern and/or by using balls having a degree of asym- 
metry. 

The error referred to in the opening paragraph arises 
when the analysis is applied to lattices indexed relative 
to a centred unit cell and (hkl) is such that 

hWl +kw2+lw3 =½ (7) 

has solutions for w1,w2,w3 equal to a lattice vector 
(with at least two of the wl non-integral). This implies 
that there are other lattice planes between those whose 
maps are separated by t. Bevis (1969) tabulates the con- 
ditions when this occurs for various centrings of the 
cell and then asserts that the extra planes are to be 
plotted at ½t from the original ones. Jaswon & Dove 
(1955) and Jaswon (1965) make equivalent assertions. 
In fact, as can be seen from Fig. 2, which shows a 
plot of (111) planes in a body-centred cubic lattice, the 
displacement need not be ½t. However, it must be one 
of ±t2 , 2 \  I ( u  -t- t), ½(v + t), ½(u + v + t), the selection depend- 

Fig.1 (cont.). (c) Two lattice planes as traced from the photograph of the model (see Plate 42). 
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(b) 

Fig. 1. Model of (5, 8,11) surface in a body-centred cubic lattice viewed (a) normal to the surface and (b) obliquely. The dark balls 
represent lattice points in the outermost  plane, the white ones those in lower planes. The vectors OA = 1,T,0; OB=O, 1,]'; 
OC=½,½,-~ shown in (a) define a primitive unit cell in the lattice. By tracing ball-to-ball displacements, the rectangular unit 
mesh can be shown to have edges of u = OA + BO = I,~, 1 (horizontal) and v =  OA + 30C=~,½,~  (vertical), while the shortest 
w is clearly OC. The plot in (c) (p. 471) shows two lattice planes as traced from the photograph.  

[To face p. 471 




